Some special continous distribution

3- Exponential distribution:
The Exponential distribution is special case of Gamma
distribution in which («<=1), then the random variable

X is said to have a Exponential distribution ifit's p.d.f
IS given by:
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And writes briefly : X~EXP(0)
Since @ = 0 itis clear that:
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The mean:
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The variance :
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The cumulative distribution function of X is given by :
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Example:

If you have a random variable x representing the lifetime of a
light bulb ,and if x has the following probability density
function:
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1-Find The probability that the lamp will stay at least 600
hours
2- Find The probability that the lamp will stay between

400 and 600 hours.
3-Find p, and o2
Solve:
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3-Since (8@ = 0.002) then:
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Example:

IF X has an exponential distribution with the parameter 8 and

py =10
find P(x>100).

solve :
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And since X has an exponential distribution then :
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Homework

IF X has an exponential distribution with the parameter 6 and
1y = 26°, where 8 >0 then find py, o*, and P(X > 500)



